DIVERGENT FORM OF THE NONLINEAR THERMOELASTICITY
EQUATIONS

V. I. Kondaurov . UDC 539.3

The complete system of nonlinear thermoelasticity equations is considered in this paper in the form of
a system of energy, momentum, and strain compatibility conservation laws in arbitrary curvilinear moving
coordinates. Utilization of the equations in such a form has anumber of advantages, related both to the investiga-
tion of the most important properties of a medium, and to the construction of conservative numerical methods.

Characteristic properties are studied in an adiabatic approximation, symmetrization is performed, suffi-
cient conditions are formulated for the equations of the dynamics of an arbitrary thermoelastic body to be hy-
perbolic.

A closed system of relationships on strong discontinuities is examined. Conditions for the solvability of
the problem determining the quantities behind the shock front are clarified for a known state before the front
and a given wave velocity.

1. Kinematics

Let us consider finite deformations of a nonlinear thermoelastic anisotropic medium. Let X = Xi; be
the radius-vector of a material particle of the body in the initial, reference configuration, x = z%; in the run-
ning, actual configuration, »; the orthonormal basis of an Eulerian spatial coordinate system, t the time, vl =
(ox1 /ot) ] , the particle velocity, and F1 ox1/ 9Xl, the gradient of the strain (distortion). Assuming mu-

tual one-to—oneness of the mapping

@t — xi(Xm, t), i, m = 1’ 27 31

we obtain a relation between the gradient of the deformation and the velocity of the particle

T ot ROFL gy
FF = Vv, 5|+ =5 F, 1.1

which is well known in the mechanics of a continuous medium [1, 2].

Equation (1.1) can be represented as a differential conservation law. In the variables (xi, t) the divergent
form (1.1) is written in the form

1 :
(37)

at

x™ + ;Z};{AL (th; - UiF?)} = O, A = detF. (1'2)
The equivalence of (1.1) and (1.2) can be shown if the formulas

A vt aA _lbaFZ P/} (1 AN
ﬁ,xm=Anaa—z=AFa s i) =0 (1.3)

are used. To prove the first two formulas of (1.3), we note that A = eIJmFiFJzF3 » where ey;, is the unit anti-
symmetric tensor, and 8A/3F = AFa . The validity of the third relationship in (1.3) follows from the fact
that

aF} )0z = F™ (9FL /0a") F2.
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Now if we use the mass conservation law pA = p,, where p,, p is the density of the medium in the reference
and actual configurations, then (1.2) can be written for the case p, = const in the form

8 (oF})/0t + 2" F§ — p'FY) — 0, (1.4)

A direct consequence of the relations pA = p, and A= AdvE /pxK is the continuity equation
dplot + d(pv*)/axzk = 0; (1.5)

however, we shall not later use it as an independent eduation. All the information contained in (1.5) in the do-
mains of smooth solutions and in the integral equalities for domains with discontinuous solutions is already
included in the differential equation (1.4) and the finite algebraic relation p =p (F) =p,/det F.

1t should also be noted that (1.4) is invariant relative to replacement of the reference system (with re-
spect to imposition of the motion as a rigid whole).

2. Thermodynamics and Governing Equations

Let U be the density of the internal energy; E =U + vivi/ 2, density of the total energy; q = ¢'s; , heat
flux vector through unit area per unit time; r, specific heat liberation; b = s, , mass Torce vector; and
o = oila;np; , Cauchy stress tensor. Considering only the thermal and mechanical interaction, the total energy
conservation law (first principle of thermodynamics) and the momentum and moment of momentum conserva-
tion laws for a nonpolar medium in an inertial coordinate system can be written in smooth solution domains in
the form [1]

pdvi/dt = do™/oxh + pbt, oth = ot 2.1)
pdU/dt = o0/ az" + dg*[az" + or. (2.2)

Let us moreover use the second principle of thermodynamics whose differential form is written for
smooth functions in the form [2]

p_____f_(i qh) __eipr>0, (2.3)

where @ > 0 is the temperature; n is the specific entropy. Introducing the free energy A =U— @n and using
the expression for dU/dt from (2.2) then (2.3) can be transformed to the form

0 pO L,

k4 V
o o0t gpud —nd — (2.4)

For a nonlinear elastic medium, postulating that

A= A(F7T’ 8? Y‘m)) O35 = o‘i]-(va 91 ‘?m)y

m L (2.5)
TI=11(Fn,9: 'Ym): qz=q"(F:T, e, ?m)'

where v, = 80/0xM and A, Oijs Ms gl are sufficiently smooth functions of their arguments, and using (2.4)
we obtain [2]
0AIdym =0, = — 0AI3, o = pFRAAIdF,, g™y > 0. (2.6)

Let us note that the symmetry condition oj; = oj; imposes the following constraint on the form of the admis-
sible free~energy functions:

(04/0F%) (Fig™ — F'g") =0, (2.7)

where gmi is the metric tensor of the coordinate system xl. For isctropic bodies the relationships (2.7) are
satisfied automatically. In the case of arbitrary anisotropy, (2.7) is three equations which should be satisfied
by any nonlinearly elastic membrane medium.

Equation (2.2) for the internal energy canbe written with (2.6) taken into account, in the form
de ﬁcr;;' vl 6qk
PCF-;;=93—8—;,; T-FP", (2.8)

where ¢, = 801/00 = — 0 9°4/00* = §U/30 is the specific heat of the medium under constant deformation.
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3. Complete System of Equations

Therefore, the complete system of equations of nonlinear thermoelasticity is writtenin the form of non-
divergent differential equations (1.1), (2.1), and (2.8) in the variables (x, t)

dui 00 OFT 550k g9

e et e (3.1
60 at dF Fhav o
sz-'dt ea-e"g_h"*" + pr, = =

and the finite relationships
A=A(FT, 8), cp = — B2A160?, o} = pFLaA/oF],
¢ =q"(F7, 8, 8/3z™), p = p,/det| Fi|, F96/02" > 0.

Equations (3.1) canbe formulated in the form of a system of differential energy and momentum conservation
laws [1, 2] and a strain compatibility conservation law expressed by the relationship (1.4):

3 (pE) , 8 (PEV* —athy, —g* .
Tt { P ) - plr 40w, (3.2)
a (pv?) + a(pvih — o) B, (p[’“) 3 (pohFi—pviF}) 0
at ozt azk o

The system of equations (3.2) possesses anumber of advantages over the traditional formulation ofthe equa-
tions of nonlinear elasticity theory [1, 2]. Writing the whole system in divergent form permits determination
of not only the classical solution in domains of sufficient smoothness, but also the generalized, weak solution
[3] in domains including discontinuities. All the relationships on discontinuities known in nonlinear elasticity
theory follow from (3.2) by a standard method [3}. Finally, the system (3.2) is convenient for the construction
of conservative difference methods of numerical solution of dynamic and static problems, methods in which
the integral conservation laws are satisfied exactly, and there is a theoretical foundation of the "through" com-
putation [4].

However, utilization of the Euler variables (x, t) is often fraught with definite difficulties, especially in
numerical investigations. The new approach, developed in recent years in a number of papers [5, 6], is the
method of moving coordinates. The method consists of introducing moving coordinate grids, which differ from
Lagrangian in the general case, whose lines coincide with the extracted singularities of the problem (bound-
aries, contact discontinuities, shocks, etc.) and satisfy a number of additional requirements.

Let
Nt = ni(zh, 1), det||oni/dzm]| 5= 0 ' (3.3)

be a mutually one-to-one, twice continuously differentiable transformation of the space (xX, t) into (i, t)
chosen from some considerations. Let us use the notation

L W S S i i ozt
Ne = azk, Ty = (ﬁ’ A= det”l‘ku, W = Ty o
Then the divergent equation in the variables (x1, t)
J.ljg--‘jn le]g iR
iq1ig..-iN 1112 Ay 1ia--+dR R
et — AR R>0, N30, im, jn=1,2,3, ©.4)

relating the N-covariant and R-confravariant tensor A with the N-covariant and R + 1-contravariant tensor B
is equivalent to the divergent equation inthe variables (nm™, t)

o(Rajiiz iR ) a (ZET'”‘.IJ'T:"' R)
iig---in + iyig..in f71]2 JR (3.5)
at n ™ iqig.. "N
where
mjyig.ig m [ pkide-dr  __ 0 g1is-iR (3.6)
B"}}z Ay “‘nh (Biliz...iN wAz 2 ’N) :
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The validity of the assertion follows from the chain of manipulations

04 dB™ 84

a = 04 34 ™
piied 2= _}__ Auwm -} Brglt) = 2= L ogm L 9w
9 ln ! g™ at ™ ( Zk ) [ w 9™ 2™ A
oB" ary ~
—_— Il — r -k
+ = —ah + B = + B e

and the relations

which are derived analogously to {1.3).

Now, the systeni of nonlinear thermoelasgticity conservation laws is written with (3.4)-(3.6) taken into ac-
count, in the curvilinear coordinates (n}, t) in the form

2(paE) - o (BIPE (0 — &m) — Mo, — n7g#]} = Bp (- + biwy),
8(PAv ) + 2 {A[pv’ (o™ — wm) — qPtart]} = Apdt, (8.7)
0(0“5)

3+ o (Bp [F} (7 — wm) —vintF}] ] =0,

where v = nkv ;W = nmwk

Let us note that because of using the tensor and vector components referred to the coordinates x! in
(3.7), although the equations are themselves written in (n™, t) the appearance of additional "sources® not due
to the physical content in the right side is avoided.

Here (3.7) takes on a quite simple form in the case of Lagrange coordinates XM when wit = vin, Kp = pgs
m _ o=im.
g TFg

E -
i a;m[ et +qh)]~r+b‘v" (3.8)

Du‘ a4 —-1m Fl .
>t ( F; ah-) = b, 5 — =2 (opvi) = 0.

4. Characteristics

. Now, let us consider the characteristic properties of the system (3.1) in an adiabatic approximation
(q* = 0). In this case (8.1) is a quasilinear system

du au :
T;+A:,(u.,);z-g=fa,a,5,y= 1, 2,.. ,13, k=1,2,3,

where uq={0,vi, F}}; f, = {rlcy, b', 0}. Let o(t, xi) = 0 be the equation of the characteristic surface, D =

a dg U3
— a—?/ {a_}' %} e » 0y = -g- l {%;}.} , the propagation velocity and the normal to this surface. Then the
equation of the characteristics has the form [3]

det|| — I 4- Atny || = 0, 4.1)

where ¢ =D ~ vknk is the velocity of the surface relative to the particles of the medium, and I is the unit matrix.
Let p a denote the right eigenvector of the matrix Aknk, which it is convenient to represent for the subsequent
computations as a set of components p,, = {a, B, y; }correspondmg to jumps in the normal derivatives of the
temperature, the velocity, and the gradient of the deiormatlon The equation (—cI = Aknk)p 0 is then written

in the form

pegea -+ 9 nhﬁ =0, 4.2)

pet + 22 g+ 20 e = 0, ey Flmaft = 0.

aF™
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In case c = 0, then by expressing the quantities « and 'y% in terms of Bi from the first and third equations
of (4.2), and substituting into the second relationship, we arrive at a system of three equations with a symmetric
coefficient matrix

2 .
gy — (Fong) (244 800 90 ) pv, 3 1pi =
{ {1} ( m a) (aF;naF; °r OF% oF} (F'nnb) B 0. (4.3)
A condition for the existence of real nonzero values of the propagation velocities of the characteristic surfaces
is positive-definiteness of the symmetric quadratic form
@ e [ —2A__ L 8 o N gy

(Fruna) ( aFToF ' <poFt oFy, ) (Fie) 133 > ‘
for arbitrary Al = 0. If the internal energy function U = U(Fﬁ“, n) is used, then this condition can be written
in the form

o v b Py
(ana) 5;';"_6;‘2; (anb) AN > 0. (4'4)
Ik is also seen from the system (4.2) that ¢ = 0 is a multiple root of the characteristic equation (4.1),

where g1 =0 in this case, and the relation
i ; i agie s dols
M2V - mia =0, M* = p, 611"2_’ m‘=n,-—agé~ (4.5)
is imposed on ygl and «o. I is not possible to make any assertion about the existence of a solution of the homo-
geneous equation (4.5) without knowledge of the coefficient matrix.

Let us formulate sufficient conditions for which the system of equations (3.1) will be known to be hyper~
bolic. To do this, we reduce the system to symmetric form by using the nondegenerate replacement of the
vector of the solution. Symmetrization and the sufficient conditions for hyperbolicity of the nonlinear gas-
dynamics and the linear elasticity theory equations with small deformations were examined in [7]. Utiliza-
tion of the divergent equation (1.4) for the strain gradient F} permitted extension of the solution of this prob-
lem to the case of an arbifrary nonlinearly elastic body Wﬁ',}]!. finite strains also.

Analogously to [7], we use the additional entropy conservation law for this:

mp 4 4.
Wlx'g =% (4.6)
which is valid in an adiabatic approximation in the region of smooth solutions. We now obtain (4.6) as a result
of the divergent equations (3.8) written in the Lagrange coordinates X™. To do this, we multiply the equation
of (3.8) by the factor g, the second by q;, the third by qd, where Qs Gj> qi] are as yet unknown functions of
®, vi, and FJ1 Adding the equations and equating to (4.6%, we obtain a system for qg, qj, q]i:

o oE avt ; OF} i i1
57=4057+Qi*;;+91i67], g (r +b'v;) +a:b =g 4.7)
8 (1 p—im ki 8 (1 p—im ki j 0 i
905‘}2;,'1(?1"): g Vi)"“gigx_m(B‘Fklmc ’)+9§5ﬁ(5§"vl)=0,
from which
1 v, . 1 Y
=g =—g> qg:*angljU?- (4.8)

We here assume that the free energy A =A(F§1, ®) is such that the quantities {qy, di» q{}are mutually solv-
able one-to-one for {@, vi, F} }. As will be seen from the sequel, the sufficient conditions for hyperbolicity
assures the validity of this assumption.

Relationships (4.7) will be known to be satisfied if the stronger relations

dn = gydE + qidv* -+ gj1F}, _
(4.9)

a0t (& FmH ) + g FomH) - gla (579 = 0
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are satisfied, which actually hold with (4.8) and (2.6) taken into account.
Rewriting (4.9) in the form
d(gok + g’ + giF} — ) = Edg, -+ v'dg; + Fidgl,

d( qu 11110,1‘uyt +_q F—lmoh_’_qJS‘m 1) ::—:;-F m kzu dqo +-‘1;'Fh_‘m0’hidqi +5Tl)ldqi

and using the notation

L°=n-qu—qevi—qZF‘3=i—( S ~A> (4.10)
L™ — “s‘qu—lmtht 4 __q'F-—lm ki + qaavrut — __F—lmoth“
we find -
ar® ¢ ar® L el
E__-E y_——a—E,F,—-——Eg, (4:.11)

1 - hi aL™ —1m ki oL™ aL™
- F 1m01U_= Flm 1=_ m1= i}
P k i _'aq aq 5 "—an .

i i

Therefore, taking (4.11) into account, the system of differential equations of nonlinear elasticity theory
can be written in the form of a symmetric first order system for four generating functions 19 1M m=1,2 3
defined by (4.10):

0 m -
6an ﬁan o aqﬂ 3qB

ot T oxm — T4at875 + L ‘Iaqﬂaxm = far (4.12)

where

Ly = aL"™/dgq; L;’c;(;‘ﬁ = 92L"™/ 8g,0qp;
Jo = {QOY qiy 9':}; fa, =1 (J" + b‘U:)y _bi’ O}
In order for system (4.12) to be hyperbolic, it is sufficient that the matrix L&aq 5 be positive-definite.
In this case there exists a nondegenerate transformation that simultaneously reduces the matrices L0 04 and

Lq&q ﬁnm in the character;stm equation

detu — chaqﬂ -+ L;’;qﬁnm“ =0,
to diagonal form.
The positive definiteness of L&ozq 8 is equivalent to convexity of the function L® = L9 (1/8, — v;/®, — F;a!/(08)).
relative to all its arguments. ILet us use the property [7] by virtue of which the function M is such that

M(1/q0, @1/20r - - +» €2/%) = (L/g0) LG g1 - - - @),

is convex if L0 is convex. The sufficient condié;on for hyperbolicity can be formulated in the form of the con-
dition for convexity of the function M (8, v;, FzVe}/p) = oi/p + viv'/2— A-. By constructing the Legendre trans-
form H of the function M, we arrive at the following result:

H(n, v, F) = U (Fhy n) + Lo,
Therefore, the matrix L° dads will be positive-definite if the quadratic form
(0°U/0g,0gp)A%A8 > 0 4.13)

is positive~definite, where go = {Fn, n}; A*+ 0 is an arbitrary vector. Condition (4.13) is known to be strong-
er than the condition (4.4).

Let us note that because of (4.11) and the convexity of L' the determinant is 4 (Z, v*, F})/d (g,, 4:, 4))
which assures the one-to-one mapping (8, v* F,)«»(qo, Qis q,) for cp # 0, that was assumed above.
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5. Strong Discontinuities

For the system of divergent equations (3.2) or (3.7) a weak or generalized solution [3] can be determined
that is valid not only in the smoothness domains, but also in the presence of surfaces of discontinuity. Let
(p(Xi, t) = 0 be the equation of such a surface. Let D denote the normal component of the motion velocity, and
n; the vector normal to the surface under consideration. Then the relations on a strong discontinuity follow
from (3.2):

[0GE] + [o%0; + ¢*ln, = 0, [pGvi] + [oi*1n, = 0, (5.1)
[0GFE] + [ov'F}] ny = 0,
where G =D — vin; is the velocity of the discontinuity motion relative to particles of the medium, and [a] is the
jump in the quantity ¢ on the discontinuity.

Combining the equation for the jump ]5‘J1 with n;, we obtain for nonstationary discontinuities (D = 0)

F,l— Po k = .
[p Jnk] [det“ F;nu ank] 0- (5 2)
The relationship (5.2) expresses the continuity of the normal to the surface of discontinuity in the reference
configuration if the density of the latter is constant.

Taking account of (5.2), the continuity of the mass flow follows from (5.1):
oGl =0, (5.3)
ordinarily obtainable from the continuity equation [1]. To show this, we identify a point onthe surface of dis-

continuity by using the curvilinear coordinates % (@ =1, 2). Let xl = xi(Xm( £Q, t), t) be the radius-vector of
some fixed point £ %, Then

9zt aXx° i i@
xm axe ot =v' + FoD,,

Erz

where Dj = (6X°/at) l&“ is the velocity of the surface relative to the reference coh.fig'uration. Hence

1061 =[p (D' — oY) m] =[pFimDi] = [pFini] D} =0.
The relationships (5.2) and (5.3) permit writing the equation for the jump in F; in the form

[Fi] = WoPim, 1 — — L1 6.4

after which the first two equations in (5.1) take the form

6 (01— 5 (ot + S ki) -+ [ ma =0, 5.5)
(o Iy, — (o6 = 0,

where 011{, oi{ is the gtress tensor ahead of and behind the shock front.

Now, let us examine the followmg problem in an adiabatic approximation (ql = 0). Let the state of a
medium be known, i.e., the quantities Fn s 7; ahead of a shock front with a given velocity of motion G. Find
the necessary conditions for which the state of the medium behind the front, given by the quantities

Fy=Ej+ KopFim, n =147, v=n,
is determined in a unique manner,
Let us consider the relationship (5.5) as a system of equation in the unknowns h™ and 7
@0 (p™, 1) =U (107}'{' + hmp;’f,nk, :] +)—U (F’“ 1]) —"“nkh o; (Fm + R Pngna, 7] +1)+ ot (F ”])}
O (™, 7) = ma[o™ (BT + K™pF%na, 4 + 1) —0™ (F7, 9] — (0682 Rt = 0.

(5.8)



In conformity with the existence theorem for implicit functions, the necessary condition for solvablhty of the
system (5.6) for hi and 7 is

D, @2, @3, OY)/A(h, k2, B3, 1) %= 0, (5.7)
where 9, &1 are sufficiently smooth functions of their arguments.

Evaluating the derivatives in (5.7), and utilizing the relationship

a® . 1, apf
w Tl =0
the inequality (5.7) can be writtenin the form
. ,
6 det| (0G)* gy; — (P mna) 61"‘ Fj (panb) 5&0 {5.8)

Comparing (5.8) and (4.4), we find that the desired condition is pG # pc, i.e., the shock velocity should not equal
the propagation velocity of the characteristic surface.
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TAKING INTO ACCOUNT THE STRUCTURAL INHOMOGENEITY
OF A COMPOSITE MATERIAL IN ESTIMATING ADHESIVE STRENGTH

L. I. Manevich and A. V. Pavlenko UDC 539.3:678.5.06

One of the basic characteristics of a composite material is its adhesive strength. The experimental de-
termination of this characteristic (in the case of a fiber composite) can be based on a measurement of the load,
for which a fiber is pulled out of the matrix.

In order to correctly calculate the adhesive strength from the results of such tests, it is necessary, how-
ever, to solve a complex mechanical problem of the distribution of contact stresses between the fiber and the
matrix. The use of rigorous methods for analyzing composites at the constituent component level does not
permit obtaining at the present fime an exact analytic solution of the corresponding problem in the theory of
elasticity. For this reason, the engineering approach [1-3], in which it is assumed that the fibers function only
under tension, while the matrix only functions under shear, is widely used. Evidently, with this method, it is
impossible to take into account the possible singularity of the contact stresses at locations where the fiber and
the mairix join on the free boundary. In addition, in using a simplified model, there arises the natural prob-
lem of the limits of applicability of the corresponding solutions even outside the regions of concentrated stresses.

A detailed representation of the stressed state can be obtained by the finite-element method. However, in
order to apply numerical methods efficiently, preliminary analytic solutions, which correctly reflect the basic
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